首页> 外文OA文献 >Deep Learning for Automatic Stereotypical Motor Movement Detection using Wearable Sensors in Autism Spectrum Disorders
【2h】

Deep Learning for Automatic Stereotypical Motor Movement Detection using Wearable Sensors in Autism Spectrum Disorders

机译:基于maTLaB的自动定型马达运动检测的深度学习   自闭症谱系障碍中的可穿戴传感器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Autism Spectrum Disorders are associated with atypical movements, of whichstereotypical motor movements (SMMs) interfere with learning and socialinteraction. The automatic SMM detection using inertial measurement units (IMU)remains complex due to the strong intra and inter-subject variability,especially when handcrafted features are extracted from the signal. We proposea new application of the deep learning to facilitate automatic SMM detectionusing multi-axis IMUs. We use a convolutional neural network (CNN) to learn adiscriminative feature space from raw data. We show how the CNN can be used forparameter transfer learning to enhance the detection rate on longitudinal data.We also combine the long short-term memory (LSTM) with CNN to model thetemporal patterns in a sequence of multi-axis signals. Further, we employensemble learning to combine multiple LSTM learners into a more robust SMMdetector. Our results show that: 1) feature learning outperforms handcraftedfeatures; 2) parameter transfer learning is beneficial in longitudinalsettings; 3) using LSTM to learn the temporal dynamic of signals enhances thedetection rate especially for skewed training data; 4) an ensemble of LSTMsprovides more accurate and stable detectors. These findings provide asignificant step toward accurate SMM detection in real-time scenarios.
机译:自闭症谱系障碍与非典型运动有关,其中非典型运动运动(SMM)会干扰学习和社交互动。由于强烈的对象内部和对象间可变性,使用惯性测量单元(IMU)的自动SMM检测仍然很复杂,尤其是当从信号中提取手工特征时。我们提出了深度学习的新应用,以促进使用多轴IMU进行自动SMM检测。我们使用卷积神经网络(CNN)从原始数据中学习判别特征空间。我们展示了CNN如何用于参数传递学习,以提高纵向数据的检测率。我们还将长短期记忆(LSTM)与CNN结合在一起,以在一系列多轴信号中对时间模式进行建模。此外,我们采用集成学习将多个LSTM学习器组合成一个更强大的SMMdetector。我们的结果表明:1)特征学习优于手工制作的特征; 2)参数传递学习在纵向设置中是有益的; 3)利用LSTM来学习信号的时间动态性,尤其对于偏斜的训练数据,提高了检测率; 4)一组LSTM提供了更准确和稳定的检测器。这些发现为实时场景中的准确SMM检测提供了重要的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号